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Abstract
The exact solution of the Dirac equation for a deformed form of the Woods–
Saxon potential is obtained for the s-wave relativistic energy spectrum. The
energy eigenvalues and two-component spinor wavefunctions are derived
analytically by using a systematical method which is called Nikiforov–Uvarov.
It is seen that the energy eigenvalues and the wavefunctions strongly depend
on the parameters of the potential. In addition, it is also shown that the non-
relativistic limit can be reached easily and directly for a special case of the
standard Woods–Saxon potential.

PACS numbers: 03.65.Ge, 03.65.Pm, 02.30.Gp, 31.30.Jv

1. Introduction

The Woods–Saxon potential and its various modifications have played in recent years an
important role in understanding the energy level spacing, particle number dependence of
energy quantities and universal properties of the electron distributions in atoms, nuclei and
atomic clusters [1–3]. It has been used in the central part of the interaction of neutron with
one heavy-ion nucleus and also for the optical potential model [4]. The exact solutions
of the Schrödinger-like equations used in optical model calculations have not known in
analytical form until four decades ago. The first analytical solution of the Schrödinger
equation for the Woods–Saxon potential was published by Bose [5], who formulated the
problem of the construction of solvable one-variable Schrödinger potentials, while the more
general case was generalized by Bencze [6], for a sum of the Woods–Saxon potential and its
derivative form. After this generalization, the bound-state energies were obtained by solving
the transcendental equation which can be obtained from the explicit expression for the S-matrix
element. According to this solution, the differential cross section in 16O+12 C elastic scattering
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has been analysed in some energies by using this potential [7]. The relativistic Dirac-oscillator
and Dirac-exponential-type potential problems have already been established by adding an
off-diagonal linear radial term to the Dirac operator a long time ago [8, 9]. Recently, the
relativistic bound-state energies and its eigenfunctions for the triaxial and axially deformed
harmonic oscillators have been derived as well [10]. In addition, a mixture of the Dirac
oscillator (tensor potential) with vector and scalar harmonic oscillator potentials has been
solved analytically for the general case [11].

Furthermore, only a few articles for the relativistic problems have been written on the
Dirac equation with the exponential-type potential. The Dirac equation has been solved
by making use of two-component spinors for the exponential-type potentials such as Woods–
Saxon and Hulthén potentials for a special case. Kennedy has studied the generalized approach
to the Woods–Saxon potential and obtained the scattering and bound-state solutions of the
one-dimensional Dirac equation. However, more realistic cases have not been discussed in
this study [12]. Alhaidari has introduced a new formalism to the definition of the radial
Dirac equation and solved for a class of shape-invariant potentials [13–15]. The main point
in the formalism is that two coupled first-order differential equations coming from the radial
Dirac equation generate Schrödinger-like equations for two spinor components. The solution
method used in these studies has been based on hypergeometric functions and the obtained
wavefunctions have been given in terms of these functions. This selection is very useful to
understand the wavefunction solution but the energy spectrum is very confused for obtaining
any quantum states.

Following the procedure given in [13], we present a new systematical approach to solve
the Dirac–Woods–Saxon problem by means of the Nikiforov–Uvarov (NU) method [16].
The wavefunction solutions are given in terms of Jacobi polynomials and then the energy
eigenvalues are obtained easily. From this point of view, we can say that the present work
provides a short-cut solution procedure on this problem and is useful to obtain the energy
spectrum of a Dirac particle. In addition, the non-relativistic limit is discussed for a special
case of the standard Woods–Saxon potential.

The paper is structured as follows: in section 2, we briefly introduce an overview of the
technical details of the formalism improved by Alhaidari. After that, the basic concepts of
the Nikiforov–Uvarov method are given in the same section to solve the Dirac–Woods–Saxon
problem. Section 3 is devoted to the solution of the problem to obtain the energy eigenvalues
and eigenfunctions by applying the NU method. The paper is concluded with a short summary
in section 4

2. Formalism and method

We first introduced Alhaidari’s formalism to solve the Dirac equation which interacts with
a spherically symmetric potential. Later, the fundamental mathematical relations of the NU
method are summarized to obtain the solution of the Schrödinger-like equations easily and
systematically.

2.1. Overview of the formalism

The basic idea of Alhaidari’s formalism is to write the relativistic Hamiltonian for a Dirac
spinor coupled to a four-component potential (A0, �A). After using the spherically symmetric
characteristic of the potential, free Dirac equation transforms to the matrix representation of
the Dirac Hamiltonian (see [13] for more detail). For convenience, if atomic units are selected
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as m = e = h̄ = 1 and the speed of light c is matched with α−1, the Hamiltonian for a Dirac
spinor in four-component potential (A0, �A) coupled non-minimally can be written as follows:

H =
(

1 + αA0 −iα �σ · �∇ + iα �σ · �A
−iα �σ · �∇ − iα �σ · �A −1 + αA0

)
(1)

where α is the Compton wavelength and �σ is three 2 × 2 Pauli spin matrices. Taking
into account the spherically symmetric cases and writing (A0, �A) as (αV (r), r̂W(r)), the
two-component Dirac equation is obtained as

H =
(

1 + α2V (r) − ER α
[

κ
r

+ W(r) − d
dr

]
α
[

κ
r

+ W(r) + d
dr

] −1 + α2V (r) − ER

)(
g(r)

f (r)

)
= 0 (2)

where f (r) and g(r) are the integrable functions, ER is the relativistic energy and κ is the
spin–orbit coupling parameter defined as κ = ±(j + 1/2) = ±1,±2, . . . , for l = j ± 1/2.
However, the current problem is analytically solvable only for � = 0 (s-states). In addition,
V (r) and W(r) are the even and odd components of the relativistic potential, respectively. For
a given value of the spin–orbit coupling parameter κ , the Schrödinger-like requirement relates
to the following potential function: W(r) = 1

ξ
V (r)− κ

r
, where ξ is a real parameter and V (r)

does not depend on the κ parameter. In order to obtain the Schrödinger-like equation from the
formalism proposed by Alhaidari, a global unitary transformation which eliminates the first
derivative is used. Thus, U(η) = exp

(
i
2αησ2

)
is applied in equation (2). η is a real constant

and σ2 is the 2 × 2 Pauli matrix which defines the two radial spinor components in terms of
the other,

φ∓(r) = α

C ± ER

[
−ξ ± C

ξ
V (r) +

d

dr

]
φ±(r), (3)

with C = cos(αη) =
√

1 − (αξ)2 > 0,(
φ+(r)

φ−(r)

)
= U

(
g(r)

f (r)

)
. (4)

Here, φ±(r) is the upper or lower spinor components, respectively. It is emphasized that
equation (3) with the top and bottom signs is not valid for negative and positive energy
solutions, respectively. The top and bottom signs in front of ER in equation (3) are not
allowed to take the values −C and +C. Because these values are elements of the negative and
positive energy spectra, respectively. Substituting these values into the radial Dirac equation
(equation (2)), we obtain the Schrödinger-like second-order differential equation in terms of
the lower and upper spinor components as follows:[

− d2

dr2
+

C2

ξ 2
V 2 + 2ERV ∓ C

ξ

dV

dr
− E2

R − 1

α2

]
φ±(r) = 0, (5)

where the ‘+’ sign belongs to the upper spinor component, while the other sign corresponds
to the lower one.

2.2. Basic concepts of the method

The solution of the Schrödinger-like second-order differential equations plays an essential role
in studying many important problems of theoretical physics. In this regard, the NU method
can be used to solve these types of equations with an appropriate coordinate transformation
s = s(r) [16]:



13458 C Berkdemir et al

ψ ′′(s) +
τ̃ (s)

σ (s)
ψ ′(s) +

σ̃ (s)

σ 2(s)
ψ(s) = 0 (6)

where σ(s) and σ̃ (s) are the polynomials with at most second degree, and τ̃ (s) is a first-degree
polynomial. It is of fundamental importance in the study of particular special orthogonal
polynomials [17]. These polynomials try to reduce equation (6) to a simple form by taking
ψ(s) = φ(s)y(s) and choosing an appropriate function φ(s). Consequently, equation (6) can
be reduced to an equation of hypergeometric type:

σ(s)y ′′(s) + τ(s)y ′(s) + λy(s) = 0, (7)

where τ(s) = τ̃ (s) + 2π(s) (its derivative must be negative) and λ is a constant given in the
form

λ = λn = −nτ ′ − n(n − 1)

2
σ ′′ (n = 0, 1, 2, . . .). (8)

Here, λ or λn are obtained from a particular solution of the form y(s) = yn(s), which is a
polynomial of degree n. yn(s) is the hypergeometric-type function whose polynomial solutions
are given by the Rodrigues relation

yn(s) = Bn

ρ(s)

dn

dsn
[σn(s)ρ(s)], (9)

where Bn is the normalization constant and the weight function ρ(s) must satisfy the condition

[σ(s)ρ(s)]′ = τ(s)ρ(s). (10)

To determine the weight function given in equation (10), we must immediately obtain the
following polynomial π(s):

π = σ ′ − τ̃

2
±

√(
σ ′ − τ̃

2

)2

− σ̃ + kσ . (11)

In principle, the expression under the square root sign in equation (11) can be arranged as
the square of a polynomial. This is possible only if its discriminant is zero. In this case, an
equation for k is obtained. After solving this equation, the obtained values of k are included
in the NU method and here there is a relationship with λ of k so that k = λ − π ′(s). After this
point, an appropriate φ(s) can be invented from φ(s)′/φ(s) = π(s)/σ (s).

3. Deformed form of the Woods–Saxon potential

The interaction among nuclei is commonly described by using a potential which consists of
the Coulomb and the nuclear potentials. It is usually taken in the form of the Woods–Saxon
potential. Here, we take into account the following deformed form for the Woods–Saxon
potential which is specified by the parameter ‘q’,

V (r) = − qV0

q + e(
r−R0

b
)
, (12)

where V0 is the potential depth, R0 is the width of the potential, b is thickness of the surface
which is usually adjusted to the experimental values of ionization energies and q is a real
positive parameter which is responsible for the deformation of the Woods–Saxon potential.
It should also be noted that this problem is, in fact, equivalent to the standard Woods–Saxon
problem under the radial coordinate transformation r → r + a, where the displacement
parameter a satisfies the expression exp(a/b) = q. Under this transformation, V (r) in
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equation (12) turns into the standard Woods–Saxon potential [18, 19]. After substituting the
potential into equation (5), we obtain an equation for the upper spinor component:− d2

dr2
+

C2

ξ 2

(
qV0

q + e(
r−R0

b
)

)2

− 2qERV0

q + e(
r−R0

b
)
− qCV0

ξb

e(
r−R0

b
)(

q + e(
r−R0

b
)
)2 − E2

R − 1

α2

φ+(r) = 0,

− d2

dr2
+

qCV0

ξb

qCV0b

ξ
− e(

r−R0
b

)(
q + e(

r−R0
b

)
)2

− 2qERV0

q + e(
r−R0

b
)
− E2

R − 1

α2

φ+(r) = 0. (13)

In order to apply the NU method, we rewrite equation (13) by using a new variable of the

form s = (
q + e

r−R0
b

)−1
,[

− s(1 − qs)

b

d

ds

(
s(1 − qs)

b

d

ds

)
+

q2C2V 2
0

ξ 2
s2

− 2qERV0s − qCV0

ξb
s(1 − qs) − E2

R − 1

α2

]
φ+(s) = 0. (14)

By introducing the following dimensionless parameters

ε =
(

E2
R − 1

α2

)
b2, β = 2qERV0b

2, γ = qCV0b

ξ
, (15)

we reach the following hypergeometric-type equation defined in equation (6):

d2φ+(s)

ds2
+

1 − 2qs

s(1 − qs)

dφ+(s)

ds
+

1

s2(1 − qs)2
× [−s2(γ 2 + γ q) + s(β + γ ) + ε]φ+(s) = 0.

(16)

After comparing equation (16) with equation (6), we obtain the corresponding polynomials:

τ̃ (s) = 1 − 2qs, σ (s) = s(1 − qs), σ̃ (s) = −s2(γ 2 + γ q) + s(β + γ ) + ε. (17)

Substituting these polynomials into equation (11), we organize the polynomial π(s) as follows:

π(s) = ±
√

(γ 2 + γ q − kq)s2 + (k − β − γ )s − ε, (18)

with σ ′(s) = 1 − 2qs. It is taken into consideration that the discriminant of the second-order
equation under the square root sign has to be zero. Hence, the expected roots are obtained as
k± = β + γ + 2εq ± 2

√
ε2q2 + βεq − εγ 2. In this case, substituting these values for each k

into equation (18), the possible solutions are obtained for π(s):

π(s) = ±i



(
q
√

ε +
√

εq2 + βq − γ 2
)
s − √

ε,

for k+ = β + γ + 2εq + 2
√

ε2q2 + βεq − εγ 2,(
q
√

ε −
√

εq2 + βq − γ 2
)
s − √

ε,

for k− = β + γ + 2εq − 2
√

ε2q2 + βεq − εγ 2.

(19)

From the four possible forms of the polynomial π(s), we have to select an appropriate one. In
this case, the derivative of τ(s) takes a negative value. Therefore, the function τ(s) satisfies
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the following equalities:

τ(s) = 1 + 2i
√

ε − s
(
2q + 2i

[
q
√

ε +
√

εq2 + βq − γ 2
])

,

τ ′(s) = −(
2q + 2i

[
q
√

ε +
√

εq2 + βq − γ 2
])

< 0.
(20)

In the present case, the polynomial π(s) becomes

π(s) = −i
[(

q
√

ε +
√

εq2 + βq − γ 2
)
s − √

ε
]
. (21)

From k = λ − π ′(s) and also equation (8), we obtain respectively

λ = β + γ + 2εq + 2
√

ε2q2 + βεq − εγ 2 − i
(
q
√

ε +
√

εq2 + βq − γ 2
)
, (22)

λn = n2q + nq + 2ni
(
q
√

ε +
√

εq2 + βq − γ 2
)
. (23)

After comparing equation (22) and equation (23), the obtained result leads to(
q
√

ε +
√

εq2 + βq − γ 2
)2

(1 + 2n + 4ε) − 4
√

ε(nq + n2q − β − γ )

× (
q
√

ε +
√

εq2 + βq − γ 2
)

+ (nq + n2q − β − γ )2 = 0,
(24)

which is the eigenvalue condition for the κ-dependent relativistic energy eigenvalue ER of the
Dirac particle. Explicit solutions of equation (24), giving ER in terms of the parameters of
the potential, can be determined numerically. It is especially noted that the relativistic energy
spectrum is normally κ-dependent but it is not here simply because of considering only the
s-wave problem (� = 0 or, equivalently, κ = −1) which is numerically solvable. To have a
physical result, the expressions under the square roots must be positive. n is a positive integer
defined in the interval of nmax � n � 0 and is called the radial quantum number.

When we deal with equation (13), it can easily seen that, in the non-relativistic limit
α → 0, the relativistic energy is a limit of the non-relativistic energy, ER ≈ 1 + α2ENR,
where ENR is the non-relativistic energy. The wave equation is reduced to the following form,
choosing q = 1:[

− d2

dr2
+

γ

b2

γ − e(
r−R0

b
)(

1 + e(
r−R0

b
)
)2

− 2V0

1 + e(
r−R0

b
)
− 2ENR

]
φ+(r) = 0. (25)

To obtain a more suitable case, we can use the following form after taking γ = −1:[
− d2

dr2
− 2

V0 − 1/2b2

1 + e(
r−R0

b
)

− 2ENR

]
φ+(r) = 0, (26)

which is in the form of the Schrödinger equation for the new type s-wave non-relativistic
Woods–Saxon potential. The corresponding energy spectrum for a bound state has been
already given in [18] by the transcendental equation:√

2(V0 + ENR)R0 −
∞∑

n=0

(
tan−1 2

√
2b2(V0 + ENR)

n + 1
− 2 tan−1

√
2b2(V0 + ENR)

n + 1 + i
√

2b2ENR

)

+ tan−1

√
2b2(V0 + ENR)

i
√

2b2ENR

= ±(n + 1)π, (27)

where the transformation V0 → V0 − 1/2b2 is applied for the convenience and the index n
relates to the radial quantum number (n = 0, 1, 2, 3, . . .). In order to obtain the relativistic
energy spectrum directly, considering the relativistic equation (13) and the non-relativistic
equation (27) for the case of γ = −1, we can propose the relevant parameter map:

b → b, R0 → R0, V0 − 1/2b2 → ERV0 − 1/2b2, ENR → (
E2

R − 1
)
/2α2.

(28)
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Using the map between the parameters of the two equations, the resulting upper relativistic
energy spectrum is found as follows:

R0

αb

√(
E2

R − 1
)
b2 + 2ERV0α2b2 − α2 −

∞∑
n=0

tan−1
2
√(

E2
R − 1

)
b2 + 2ERV0α2b2 − α2

α(n + 1)

− 2 tan−1

√(
E2

R − 1
)
b2 + 2ERV0α2b2 − α2

α(n + 1) + ib
√

E2
R − 1



+ tan−1

√(
E2

R − 1
)
b2 + 2ERV0α2b2 − α2

ib
√

E2
R − 1

= ±(n + 1)π. (29)

Equation (29) indicates that one deals with a family of the Woods–Saxon potential for the
s-states and can also be used to describe the single-particle motion in nuclei.

Let us now find the corresponding wavefunctions. According to the NU method, the
polynomial solutions of the hypergeometric function y(s) depend on the determination of
weight function ρ(s) satisfying the differential equation [σ(s)ρ(s)]′ = τ(s)ρ(s). Thus, ρ(s)

is calculated as

ρ(s) = (1 − qs)2iν s2i
√

ε, (30)

where ν =
√

ε + β/q − (γ /q)2. Substituting into the Rodrigues relation given in equation (9),
the wavefunctions are obtained in the following form:

ynq(s) = An (1 − qs)−2iν s−2i
√

ε dn

dsn
[(1 − qs)n+2iνsn+2i

√
ε], (31)

where An is the normalization constant. Taking q = 1, the polynomial solutions of
yn(s) are expressed in terms of the Jacobi polynomials, which is one of the orthogonal
polynomials. In this case, the weight function is (1− s)2iνs2i

√
ε and equation (31) is reduced to

∼P
(2i

√
ε,2iν)

n (1 − 2s) [17]. After substituting π(s) and σ(s) into the expression φ(s)′/φ(s) =
π(s)/σ (s), the other part of the wavefunction is found as

φ(s) = (1 − qs)iνs i
√

ε. (32)

We write the upper spinor component in terms of the Jacobi polynomials

φ+
n (s) = Bns

i
√

ε(1 − s)iνP (2i
√

ε,2iν)
n (1 − 2s), (33)

where Bn is a normalization constant. This equation satisfies the following boundary
conditions:

φ+
n (s) = 0 at s = 0 (r → ∞), (34)

φ+
n (s) = 0 at s = 1 (r = 0). (35)

The last condition is valid for realistic nuclei because the radius R0 is very larger than the
diffusivity b, i.e., R0 
 b. The lower component of the spinor wavefunction can also be
obtained by substituting equation (33) into equation (3). We should then solve the following
equation:

φ−
n (s) = α

C + ER

[
−ξ +

C

ξ
V (s) − s(1 − s)

b

d

ds

]
φ+

n(s). (36)
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where ER �= C. This is possible if a new variable is introduced as x = 1 − 2s . Now, the
equation of the lower spinor component has been transformed into the following form:

φ−
n (s) = α

C + E±
Rn

[
−ξ − V0C(1 − x)

2ξ
+

(1 − x)(1 + x)

2b

d

dx

]
φ+

n(s), (37)

with

φ+
n (s) = Cn(1 − x)i

√
ε(1 + x)iνP (2i

√
ε,2iν)

n (x), (38)

where Cn is the normalization constant and its value is equal to Bn2−iν−i
√

ε. If the following
recursion relations and the differential formula satisfied by the Jacobi polynomials [20] are
included to the solution

(1 + x)P (µ,�)
n (x) = 2

2n + µ + � + 1

[
(n + �)P (µ,�−1)

n (x) + (n + 1)P
(µ,�−1)

n+1 (x)
]
,

(1 − x)P (µ,�)
n (x) = 2

2n + µ + � + 1

[
(n + µ)P (µ−1,�)

n (x) − (n + 1)P
(µ−1,�)

n+1 (x)
]
,

(1 − x2)
dP

(µ,�)
n

dx
(x) = −n

(
x +

� − µ

2n + µ + �

)
P (µ,�)

n (x) + 2
(n + µ)(n + �)

2n + µ + �
P

(µ,�)

n−1 (x),

P (µ,�)
n (x) = n + µ + � + 1

2n + µ + � + 1
P (µ,�+1)

n (x) +
n + µ

2n + µ + � + 1
P

(µ,�+1)

n−1 (x),

(39)

we obtained the lower spinor component in terms of the Jacobi polynomials as a function of s

φ−
n (s) = α

C + ER

(1 − s)iνs i
√

ε

{
P (2i

√
ε,2iν)

n (1 − 2s) − i
√

ε

b
(1 − s)P (2i

√
ε,2iν)

n (1 − 2s)

+ 2LsP (2i
√

ε,2iν)
n (1 − 2s) − 1

b
(1 − s)s

dP
(2i

√
ε,2iν)

n (1 − 2s)

ds

}
, (40)

where L = iν/2b − CV0/ξ .

4. Conclusion

We have solved the Dirac equation for the deformed form of the Woods–Saxon potential
following a formalism introduced by Alhaidari. The NU method is used to obtain a systematical
solution in the Dirac–Woods–Saxon problem. The energy spectrum of the bound states is
analytically obtained and two-component spinor eigenfunctions are written in terms of the
Jacobi polynomials. It is seen that the energy eigenvalues are a function of the parameter q
and the solution space splits into two distinct subspaces. We have seen that the non-relativistic
limit of the Dirac equation can be obtained easily.
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